Experte für Fackelelektronenkondensatoren
Blog
heim

Blog

  • Identification method of tantalum capacitor
    Aug 09, 2024
      (1) Direct marking method: Use the letters and numbers to directly mark the model and specifications on the shell. (2) Letter symbol method: Use a regular combination of numbers and letter symbols to represent capacity. The text symbol indicates the unit of its capacitance: P, N, u, m, F, etc. The method is the same as that of resistance. The nominal allowable deviation is also the same as that of resistance. For capacitors less than 10pF, the allowable deviation is replaced by letters: B-- ± 0.1pF, C-- ± 0.2pF, D-- ± 0.5pF, F-- ± 1pF. (3) Color scale method: It is the same as the resistance expression, and the unit is generally pF. The withstand voltage of small electrolytic capacitors is also color-coded, and is located near the root of the positive lead. The meaning is shown in the following table: Color Black Brown Red Orange Yellow Green Blue Purple Grey Withstand voltage 4V 6.3V 10V 16V 25V 32V 40V 50V 63V (4) Identification method of imported capacitors: Generally, imported capacitors are composed of 6 items. First item: Letters for categories: The second item: use two digits to indicate its shape, structure, packaging method, lead start and relationship with the shaft. The third item: the temperature characteristics of temperature-compensated capacitors, with letters and colors, the meaning is shown in the following table: No. Letter Color Temperature Coefficient Allowed Deviation Letter Color Temperature Coefficient Allowed Deviation 1 A gold +100 R yellow -220 2 B gray +30 S green -330 11 P Orange -150 YN -800 ~ -5800 Note: The unit of temperature coefficient is 10e -6 / ℃; the allowable deviation is%. The fourth term: use the numbers and letters to indicate the withstand voltage, the letters represent valid values, and the numbers represent the power of 10 of the multiplicand. The fifth item: Nominal capacity, expressed by three digits, the first two are valid values, and the third is a power of ten. When there is a decimal, it is represented by R or P. The unit of ordinary capacitor is pF, and the unit of electrolytic capacitor is uF. The sixth item: allowable deviation. Expressed by a letter, the meaning is the same as domestic capacitors. The color coding method is also used, the meaning is the same as that of domestic capacitors. For imports, take 477 A71N13 as an example, the next six digits respectively correspond to the above six items  
    WEITERLESEN
  • What are the functions of ceramic capacitors?
    Jul 10, 2024
    1. Bypass (decoupling) This is a low impedance path for some paralleled components in AC circuits. In electronic circuits, decoupling capacitors and bypass capacitors both play a role in anti-interference. Capacitors are in different positions and have different names. For the same circuit, the bypass capacitor takes the high-frequency noise in the input signal as the filtering object, and filters the high-frequency clutter carried by the previous stage. The decoupling capacitor is also called decoupling. Capacitors are designed to filter out interference from output signals. We can often see that a decoupling capacitor is connected between the power supply and ground. It has three functions: one is to serve as an energy storage capacitor for the integrated circuit; the other is to filter out high-frequency noise generated by the device and cut off The propagation path through the power supply circuit; the third is to prevent the noise carried by the power supply from interfering with the circuit. 2. Coupling The ceramic capacitor used in the coupling circuit is called a coupling capacitor. It is used extensively in RC-Coupled Amplifiers and other capacitive coupling circuits. It acts as a DC-to-AC barrier. It acts as a connection between two circuits and allows AC. The signal passes and is transmitted to the next stage circuit. 3. Filtering The ceramic capacitor used in the filter circuit is called a filter capacitor. The filter capacitor removes the signal in a certain frequency band from the total signal. Therefore, in the power circuit, the rectifier circuit changes the AC to a pulsating DC, and After that, a large-capacity ceramic capacitor is connected, and its charging and discharging characteristics are used to make the rectified pulsating DC voltage into a relatively stable DC voltage. 4. Resonance The safety capacitors used in LC resonant circuits are called resonance capacitors. This type of capacitor circuit is required in both LC parallel and series resonance circuits. 5. Temperature compensation Compensate for the effects of the insufficient temperature adaptability of other components to improve the stability of the circuit. 6. Tuning Is a system tuning for frequency-related circuits, such as mobile phones, radios, and televisions. 7. Energy storage Energy storage is the storage of electrical energy for release when necessary. Such as camera flash, heating equipment and so on. (The energy storage level of many capacitors can now approach the level of lithium batteries, and the energy stored in a capacitor can be used by a mobile phone for a day).    
    WEITERLESEN
  • What are the unique advantages of high-voltage ceramic capacitors in application?
    Jun 10, 2024
    In the usual circuit design and practical application of high-voltage ceramic chip capacitors, the biggest advantage is that this high-voltage capacitor has a very high current climb rate, which is especially suitable for high-current loop non-inductive structures. This advantage makes it particularly suitable for the selection and use of high-voltage substations. At the same time, the high-voltage capacitor of this material also has high stability, and its own capacity loss changes with temperature and frequency, and its own special series structure also makes it very suitable for long-term stable in high-voltage environment  jobs.
    WEITERLESEN
  • Development of Chip Tantalum Capacitor in China: Opportunity and Challenge
    May 10, 2024
    The rated voltage range of chip tantalum capacitor is 4 ~ 50V, the capacitance range is 0.047 ~ 330 uf, and the working temperature range is -80°C~ + 155 ℃. Packaging is divided into three types: non packaging type, molding packaging type and resin packaging type. It has the characteristics of good high frequency characteristics, large capacity, small volume, low impedance and small leakage current, widely used in computers, mobile phones, pagers, program-controlled exchanges, fax machines and military equipment.   International market development Due to the wide range of tantalum electrolytic capacitor capacity and the high maturity of chip technology and product structure, the total production and chip rate are increasing year by year. According to relevant reports, the output of tantalum electrolytic capacitors in the world increased from 11 billion in 1995 (market demand of US $2.165 billion) to 18 billion in 1998, 21 billion in 1999, 24 billion in 2000, 27 billion in 2001 and 31 billion in 2002. The average annual growth rate of tantalum electrolytic capacitors was 16.9% from 1995 to 2000 and 13.6% from 2000 to 2002.   The market demand of traditional lead tantalum electrolytic capacitor is decreasing year by year, while that of chip tantalum electrolytic capacitor is increasing year by year. The global output of chip tantalum electrolytic capacitors has increased from 7.9 billion in 1995 with chip rate of 71% to 19 billion in 2000 with chip rate of 80%. At present, the chip rate has exceeded 90%. Its development direction is as follows:   (1) High reliability with the chip tantalum electrolytic capacitor is widely used, in order to ensure the normal operation of electronic equipment, and suitable for all kinds of harsh environment, its reliability is put forward higher and higher requirements. Led by the United States, in order to meet the needs of military equipment and constantly improve its reliability, such as satellites, space shuttles, etc. have reached the level of eight or more reliabilities.   (2) With the continuous improvement of the specific capacitance of tantalum powder, the large capacity chip tantalum electrolytic capacitor is developing continuously: first, under the condition of the same size, volume and voltage resistance, the capacitance of chip tantalum electrolytic capacitor is increasing; The second is to develop chip tantalum electrolytic capacitors with high voltage and larger capacity to meet the needs of the development of electronic machines.   (3) Small volume is represented by Japan, small volume chip tantalum electrolytic capacitor is developing continuously, in addition to large-scale production and large-scale put on the market 0805, 0402 has been successfully developed in the laboratory.   (4) High frequency and low equivalent series resistance (ESR) at the end of 1980s, the United States first developed chip tantalum electrolytic capacitor with low ESR, which was widely used in military electronics. Such as T494 andT495 of KEMET, TPS of AVX, 595Dof Sprague, etc. It is reported that KEMET has developed an ESR of less than 20 m Ω Products.   At present, AVX, NEC, Hitachi, Matsushita and KEMET are the main manufacturers of tantalum electrolytic capacitors in the world, with an annual capacity of 2-7 billion. Among them, AVX company of the United States accounts for 25% of the market share of chip tantalum electrolytic capacitors in the world, and the quotation of AVX and KEMET is very low, which makes domestic enterprises unable to compete with them.   China market development The domestic market of chip tantalum electrolytic capacitors has two characteristics: one is that 90% of the market share is occupied by imported products; the other is that the average price of domestic products is about twice that of imported products. These means that domestic enterprises have encountered serious resistance in developing chip tantalum electrolytic capacitors, and the products have been defeated by the price war before entering the market.   In 2000, 3.324 billion tantalum electrolytic capacitors were imported, with a year-on-year growth of 306.4%, and foreign exchange consumption of 624.833 million US dollars, with a year-on-year growth of 273.7%; Domestic production is 1.265 billion, export is 1.069 billion, with a year-on-year growth of 58.4%, and foreign exchange earning is 526.63 million US dollars, with a year-on-year growth of 95.3%; The total demand of domestic market is 3.52 billion pieces and 77 million US dollars; The market share of domestic chip tantalum electrolytic capacitors is 5.6% and 16.2% respectively. The gap is due to the fact that the average domestic price of domestic chip tantalum electrolytic capacitors is three times that of imported products. The low market share makes us see the big gap.   In 2001, domestic production of chip tantalum electrolytic capacitors was 1.92 billion, with a year-on-year growth of 51.5%. Although it was the low tide year of world economic development, the export still increased by 52.4% year-on-year to 1.63 billion, but because the average export price decreased by 51.0%, the foreign exchange earning was only 422.32 million US dollars, with a year-on-year decline of 25.3%; Due to the great development of domestic mobile phone production, the import volume doubled to 7.576 billion over the same period of last year. As the average import price also dropped by 35.6%, the foreign exchange consumption was 925.2367 million US dollars, up only 46.9% over the same period of last year; The total demand of domestic market was 7.86 billion pieces and 108 million US dollars, with a year-on-year growth of 123.3% and 40.3% respectively; The total demand of domestic market was 7.86 billion pieces and 108 million US dollars, with a year-on-year growth of 123.3% and 40.3% respectively; The market share of domestic chip tantalum electrolytic capacitors is 3.7% and 11.9% respectively, and the market share continues to decrease.   In 2002, the average export price of domestic chip tantalum electrolytic capacitors increased by 43.1% instead of decreasing, so the export volume decreased by 25.5% to 1.214 billion, and the foreign exchange earned was 425135000 US dollars, up 6.7% year on year; The average import price rose more year-on-year, reaching 69.4%. However, due to the strong demand in the domestic market, the import volume still increased by 20.2% year-on-year, reaching 9.108 billion, and the amount of foreign exchange increased by 103.7% year-on-year to 194 million US dollars; It is estimated that the annual output of chip tantalum electrolytic capacitors in China will be 1.52 billion, with a year-on-year decrease of 20.8%; The total demand of the domestic market was 9.4 billion pieces and 213 million US dollars, with a year-on-year growth of 19.7% and 97.2% respectively; The market share of domestic chip tantalum electrolytic capacitors is 3.2% and 9.1% respectively, which is still declining.   The mainland of China has become one of the largest consumers and main producers of chip tantalum electrolytic capacitors in the world. However, due to the low level of domestic production technology, especially the high production cost and average export price of domestic enterprises, not only the export is reduced, but also the products are difficult to enter the domestic mobile phone production market. The domestic market share is getting lower and lower, and the domestic market demand is met by a large number of imports. The development of chip tantalum electrolytic capacitors in China is facing serious challenges, and domestic enterprises have a long way to go.   In the face of the reality of the rapid development of chip tantalum electrolytic capacitor domestic market, it is only a drop in the bucket, and it is beyond expectation. I don't know when the situation of organic meeting but not challenging will come to an end.    
    WEITERLESEN
  • Torch MLCC Production Process
    Nov 21, 2024
    MLCC industrial chain can be divided into three parts: upstream materials, midstream manufacturing and downstream applications. The raw materials mainly include ceramic powder, electrode metal and so on. Ceramic powder is the most important raw material, which determines the performance of MLCC. The core requirements are purity, particle size and shape. The manufacturing technology and process of high purity, ultra-fine and high performance ceramic powder is the bottleneck restricting the development of MLCC industry in China. Due to the difficulty of preparation, most of the market share is occupied by Japanese and Korean suppliers, while the electrode metals such as silver and nickel are mainly supplied by domestic manufacturers.The manufacturing links in the middle reaches are mainly concentrated in Japan and South Korea, Taiwan and Mainland China. MLCC downstream applications are divided into civil and military fields. Consumer electronics and automobile are the biggest components of civil field. Military field includes aerospace, aviation, ships, weapons and other important national defense fields. Military products have more stringent requirements for reliability. Wet printing and ceramic adhesive transfer technology become the development direction. At present, the mainstream MLCC production processes include dry tape casting process, wet printing process and ceramic adhesive film transfer process. With the increasing demand for products and the demand for high end multilayer ceramic capacitors, wet printing process and transfer process of ceramic adhesive have attracted much attention due to the advanced technology of manufacturing, and have gradually become the development trend of multilayer ceramic capacitor manufacturing technology. From the perspective of the complete manufacturing process of MLCC, the order is batching (sizing), tape casting (film stripping), electrode printing, stacking, pressure balancing, cutting, debonding, sintering, polishing, chamfering, silver staining, electroplating, testing, taping and packaging. Pulp mixing, molding, printing, stacking and sintering are the core processes, and also the technical barriers of manufacturers. 1) Preparation technology of dielectric ceramic powder paste: MLCC requires dielectric ceramic powder to have no defect, good compactness, fine and uniform grain. The quality of adhesive, the amount of various components, the order and time of preparation, the choice of dispersant and the application of dispersion equipment directly affect the viscosity, dispersibility, plasticity and wettability of porcelain powder slurry. This technical link is the core know-how of each manufacturer, which is derived from the continuous debugging and accumulation of many years of production experience. 2) Thin medium film forming technology: the quality of ceramic medium is one of the main factors affecting the performance of MLCC. The main factors affecting the quality of ceramic film are: bubbles, pinholes, impurities, tape casting equipment and dispersion of ceramic powder slurry (preparation technology of dielectric ceramic powder slurry). Therefore, the film casting equipment with high precision and full automation is generally used, and then the film thickness is controlled by the film thickness monitor with high precision and full automation, which can produce the film with moderate strength and elasticity, compactness and uniformity .High quality ceramic film with good properties, dust-free and impurity free. 3) Screen overprint Technology: the formation of inner electrode is a crucial process of MLCC. The position, shape and flatness of inner electrode are related to the electrical performance of MLCC. At the same time, in order to realize the miniaturization and large volume of MLCC, the precision of its printing graphics is one level higher than that of the general thick film printing, so there are very high requirements for the speed of the printing press, the angle of the scraper, the type of the screen, the wire diameter, the thickness, the area and the opening rate of the screen. 4) Lamination technology: high level MLCC has a very high requirement for lamination technology. Low lamination pressure will lead to a decrease in the density of capacitor chip, which is easy to cause delamination of chip lamination. High tech lamination technology can eliminate the above defects, and control the thickness of dielectric film through lamination technology to improve the yield of MLCC. 5) Sintering technology: sintering has a crucial impact on the electrical performance of MLCC. In addition to the problem of metal oxidation, the difference of sintering shrinkage curve between electrode and medium should be considered during sintering, and the ideal sintering curve should be selected. If the sintering time is too short, the temperature is too low, and the atmosphere in the furnace is not enough, the grain growth is poor, the ceramic body is not dense enough, and the electrical properties are reduced. On the contrary, if the sintering time is too long, the temperature is too high, and the atmosphere is too thick, the grain will grow abnormally, and the additional crystal phase will be produced, which will make the electrical performance worse. Only when the sintering parameters are strictly controlled, can uniform and dense ceramic dielectric structure be formed. Thin medium and high layer number are the development direction of technology. Increasing capacitance is the trend of MLCC. The capacitance of MLCC is proportional to the overlap area of inner electrode, the number of layers of dielectric ceramic materials and the relative dielectric constant of the dielectric ceramic materials used, and inversely with the thickness of single layer medium. Therefore, there are two ways to increase the capacitance in a certain volume. One is to reduce the thickness of the medium, the lower the thickness of the medium, the higher the capacity of MLCC; the second is to increase the number of layers inside the MLCC, the more the number of layers, the higher the capacity of MLCC.
    HEISSE TAGS : MLCC
    WEITERLESEN
  • Anwendung von Hochtemperaturkondensatoren in Stromversorgungssystemen für Fahrzeuge mit neuer Energie
    Sep 16, 2024
    Angesichts der zunehmenden globalen Sorge um Umweltprobleme sind Fahrzeuge mit neuer Energie zu einer wichtigen Richtung in der Automobilindustrie geworden. Im Stromversorgungssystem neuer Energiefahrzeuge erregt der Einsatz von Hochtemperaturkondensatoren zunehmend Aufmerksamkeit und Anerkennung. In diesem Artikel werden die Anwendung und die technologischen Eigenschaften von Hochtemperaturkondensatoren in den Stromversorgungssystemen von Fahrzeugen mit neuer Energie untersucht.Überblick über Stromversorgungssysteme für New Energy VehiclesDas Stromversorgungssystem von New-Energy-Fahrzeugen ist eine seiner Schlüsselkomponenten und seine Leistung wirkt sich direkt auf die Dynamik, Reichweite und Sicherheit des Fahrzeugs aus. Herkömmliche Fahrzeuge mit Verbrennungsmotor sind zur Stromerzeugung auf Motoren mit fossilen Brennstoffen angewiesen, während Fahrzeuge mit neuer Energie als Energiequelle Elektromotoren nutzen, die typischerweise Komponenten wie Batteriepakete, Motorsteuerungen und Ladesysteme umfassen.TDie Rolle von HochtemperaturkondensatorenIm Stromversorgungssystem von New-Energy-Fahrzeugen sind Kondensatoren wichtige elektronische Komponenten, die hauptsächlich zur Energiespeicherung und Spannungsfilterung dienen. In Umgebungen mit hohen Temperaturen kommt es jedoch bei herkömmlichen Kondensatoren häufig zu Leistungseinbußen und einer verkürzten Lebensdauer, wodurch die Stabilität und Zuverlässigkeit des gesamten Systems beeinträchtigt wird. Daher ist der Einsatz von Hochtemperaturkondensatoren zu einer wirksamen Möglichkeit geworden, die Leistung von Stromversorgungssystemen für Fahrzeuge mit neuer Energie zu verbessern.Technologische Eigenschaften von Hochtemperaturkondensatoren Hochtemperaturbeständigkeit: Hochtemperaturkondensatoren werden aus speziellen Materialien und Strukturen entwickelt, die in Umgebungen mit hohen Temperaturen eine gute Leistung gewährleisten und Probleme wie Leckagen und Ausfälle minimieren. Lange Lebensspanne: Hochtemperaturkondensatoren haben eine längere Lebensdauer und sorgen für eine stabile elektrische Spannung Eigenschaften unter Hochtemperaturbedingungen und reduzieren so die Austausch- und Wartungskosten. Geringe Verluste: Hochtemperaturkondensatoren weisen geringe Verluste auf, wodurch die Energieausnutzung effektiv verbessert und Energieverluste während des Energieumwandlungsprozesses reduziert werden. Effiziente Energiespeicherung: Hochtemperaturkondensatoren verfügen über eine hohe Energiedichte und Leistungsdichte, was ein schnelles Laden und Entladen ermöglicht und die Anforderungen an schnelle Beschleunigung und hohe Leistungsabgabe in Elektrofahrzeugen erfüllt. Anwendung von Hochtemperaturkondensatoren in Stromversorgungssystemen für Fahrzeuge mit neuer EnergieBatteriemanagementsystem: Hochtemperaturkondensatoren können zur Glättung der DC-Busspannung und zur kurzfristigen Spitzenleistungskompensation in Batteriemanagementsystemen verwendet werden, wodurch die Systemstabilität und die dynamische Leistung verbessert werden. Motorsteuerungen: Hochtemperaturkondensatoren können zur DC-Bus-Spannungsfilterung und Leistungsfaktorkorrektur in Motorsteuerungen eingesetzt werden, wodurch die Effizienz und Reaktionsgeschwindigkeit des Motorantriebs verbessert wird. Schnellladesysteme: Hochtemperaturkondensatoren können zur Glättung der DC-Busspannung und zur kurzfristigen Spitzenleistungsunterstützung in Schnellladesystemen eingesetzt werden, wodurch die Ladezeit verkürzt und die Ladeeffizienz verbessert wird. Elektronische Geräte im Fahrzeug: Hochtemperaturkondensatoren können auch zur Leistungsfilterung und -regelung in elektronischen Geräten im Fahrzeug verwendet werden und stellen so den normalen Betrieb verschiedener elektronischer Geräte im Fahrzeug sicher. Abschluss Mit der rasanten Entwicklung von Fahrzeugen mit neuer Energie haben Hochtemperaturkondensatoren als wichtige elektronische Komponenten breite Perspektiven in den Stromversorgungssystemen von Fahrzeugen mit neuer Energie. Angesichts des kontinuierlichen Fortschritts und der Verbesserung der Hochtemperaturkondensatortechnologie wird davon ausgegangen, dass sie in Zukunft eine immer wichtigere Rolle im Bereich neuer Energiefahrzeuge spielen und die Popularisierung und Entwicklung neuer Energiefahrzeuge stark unterstützen werden. 
    WEITERLESEN
  • Klassifizierung von Superkondensatoren
    Sep 15, 2023
     Für Superkondensatoren gibt es unterschiedliche Klassifizierungsmethoden basierend auf unterschiedlichen Inhalten.Erstens können Superkondensatoren je nach Energiespeichermechanismus in zwei Kategorien eingeteilt werden: elektrische Doppelschichtkondensatoren und Faraday-Quasi-Kondensatoren. Unter ihnen erzeugen elektrische Doppelschichtkondensatoren Speicherenergie hauptsächlich durch die Adsorption reiner elektrostatischer Ladungen auf der Elektrodenoberfläche. Faraday-Quasi-Kondensatoren erzeugen Faraday-Quasi-Kapazität hauptsächlich durch reversible Redoxreaktionen auf und nahe der Oberfläche von Faraday-Quasi-kapazitiven aktiven Elektrodenmaterialien (wie Übergangsmetalloxiden und Polymerpolymeren) und ermöglichen so die Energiespeicherung und -umwandlung.Zweitens kann man ihn je nach Art des Elektrolyten in zwei Kategorien einteilen: wässrige Superkondensatoren und organische Superkondensatoren.Je nachdem, ob die Arten der aktiven Materialien gleich sind, können sie außerdem in symmetrische Superkondensatoren und asymmetrische Superkondensatoren unterteilt werden.Schließlich lassen sich Superkondensatoren je nach Zustand des Elektrolyten in zwei Kategorien einteilen: Festelektrolyt-Superkondensatoren und Flüssigelektrolyt-Superkondensatoren.
    WEITERLESEN
  • Die Hauptparameter von Superkondensatoren
    Sep 12, 2023
     1) Lebensdauer: Wenn der Innenwiderstand des Superkondensators zunimmt, nimmt die Kapazität ab, wenn er innerhalb des angegebenen Parameterbereichs liegt, und seine effektive Nutzungsdauer kann verlängert werden, was im Allgemeinen mit seinen in Artikel 4 angegebenen Eigenschaften zusammenhängt. Was beeinflusst Das aktive Austrocknen der Lebensdauer, der Anstieg des Innenwiderstandes und das Absinken der Fähigkeit, elektrische Energie auf 63,2 % zu speichern, wird als Lebensende bezeichnet.2) Spannung: Superkondensatoren haben eine empfohlene Spannung und eine optimale Arbeitsspannung. Wenn die verwendete Spannung höher als die empfohlene Spannung ist, verkürzt sich die Lebensdauer des Kondensators, aber der Kondensator kann im Überspannungszustand lange Zeit ununterbrochen arbeiten. Die Aktivkohle im Inneren des Kondensators zersetzt sich und bildet ein Gas. Es ist vorteilhaft, elektrische Energie zu speichern, sie darf jedoch das 1,3-fache der empfohlenen Spannung nicht überschreiten, da sonst der Superkondensator durch die zu hohe Spannung beschädigt wird.3) Temperatur: Die normale Betriebstemperatur des Superkondensators beträgt -40 ~ 70 ℃. Temperatur und Spannung sind wichtige Faktoren, die die Lebensdauer von Superkondensatoren beeinflussen. Jeder Temperaturanstieg um 5 °C verkürzt die Lebensdauer des Kondensators um 10 %. Bei niedrigen Temperaturen führt eine Erhöhung der Betriebsspannung des Kondensators nicht zu einer Erhöhung des Innenwiderstands des Kondensators, was die Effizienz des Kondensators verbessern kann. 4) Entladung: Bei der Impulsladetechnik ist der Innenwiderstand des Kondensators ein wichtiger Faktor; Bei der Kleinstromentladung ist die Kapazität ein wichtiger Faktor.5) Laden: Es gibt viele Möglichkeiten, Kondensatoren aufzuladen, z. B. Laden mit konstantem Strom, Laden mit konstanter Spannung und Impulsladen. Während des Ladevorgangs verringert die Reihenschaltung eines Widerstands mit der Kondensatorschaltung den Ladestrom und erhöht die Lebensdauer der Batterie.
    WEITERLESEN
  • Vorsichtsmaßnahmen für die Verwendung von Superkondensatoren
    Sep 07, 2023
     1) Superkondensatoren haben eine feste Polarität. Überprüfen Sie vor der Verwendung die Polarität.2) Superkondensatoren sollten bei Nennspannung verwendet werden. Wenn die Kondensatorspannung die Nennspannung überschreitet, kommt es zur Zersetzung des Elektrolyten, gleichzeitig erwärmt sich der Kondensator, die Kapazität nimmt ab, der Innenwiderstand steigt und die Lebensdauer verkürzt sich.3) Superkondensatoren sollten nicht in Hochfrequenz-Lade- und Entladekreisen verwendet werden. Durch das schnelle Hochfrequenzladen und -entladen erwärmt sich der Kondensator, die Kapazität nimmt ab und der Innenwiderstand steigt.4) Die Umgebungstemperatur hat einen wichtigen Einfluss auf die Lebensdauer des Superkondensators. Daher sollten Superkondensatoren möglichst weit entfernt von Wärmequellen aufgestellt werden.5) Wenn ein Superkondensator als Notstromversorgung verwendet wird, kommt es im Moment der Entladung zu einem Spannungsabfall, da der Superkondensator einen großen Innenwiderstand hat.6) Superkondensatoren sollten nicht in einer Umgebung mit einer relativen Luftfeuchtigkeit von mehr als 85 % oder mit giftigen Gasen aufgestellt werden. Unter diesen Umständen werden die Leitungen und das Kondensatorgehäuse korrodiert, was zu einer Unterbrechung führt.7) Superkondensatoren sollten nicht in Umgebungen mit hohen Temperaturen und hoher Luftfeuchtigkeit aufgestellt werden. Sie sollten möglichst in einer Umgebung mit einer Temperatur von -30 bis 50 °C und einer relativen Luftfeuchtigkeit von weniger als 60 % gelagert werden. Vermeiden Sie plötzliche Temperaturanstiege und -abfälle, da dies zu Produktschäden führen kann. 8) Bei der Verwendung eines Superkondensators auf einer doppelseitigen Leiterplatte ist zu beachten, dass die Verbindung nicht durch die Reichweite des Kondensators hindurchgehen kann. Aufgrund der Art und Weise, wie der Superkondensator installiert ist, kann es zu einem Kurzschluss kommen.9) Wenn der Kondensator auf die Leiterplatte gelötet wird, darf das Kondensatorgehäuse nicht mit der Leiterplatte in Kontakt kommen, da sonst das Lot in das Durchgangsloch des Kondensators eindringt und die Leistung des Kondensators beeinträchtigt.10) Kippen oder verdrehen Sie den Kondensator nach der Installation eines Superkondensators nicht mit Gewalt. Dies führt dazu, dass sich die Kondensatorleitungen lockern und die Leistung beeinträchtigt wird.11) Vermeiden Sie eine Überhitzung der Kondensatoren beim Löten. Wenn der Kondensator beim Schweißen überhitzt, verringert sich die Lebensdauer des Kondensators.12) Nach dem Löten des Kondensators müssen die Leiterplatte und der Kondensator gereinigt werden, da einige Verunreinigungen zu einem Kurzschluss des Kondensators führen können.13) Wenn Superkondensatoren in Reihe verwendet werden, besteht ein Problem des Spannungsausgleichs zwischen den Zellen. Eine einfache Reihenschaltung führt zu einer Überspannung eines oder mehrerer einzelner Kondensatoren, wodurch diese Kondensatoren beschädigt werden und die Gesamtleistung beeinträchtigt wird. Wenn die Kondensatoren daher in Reihe verwendet werden, ist technische Unterstützung vom Hersteller erforderlich.14) Treten bei der Verwendung von Superkondensatoren weitere Anwendungsprobleme auf, sollten Sie sich an den Hersteller wenden oder die entsprechenden technischen Daten in der Anleitung des Superkondensators nachschlagen.
    WEITERLESEN
  • Fehlerursache von Keramikkondensatoren
    Sep 04, 2023
     1. Ausfall des Keramikchip-Kondensators durch äußere Krafteinwirkung(1) Weil die Keramik-Chip-Kondensator Da es spröde ist und keinen Stift hat, wird es stark von der Kraft beeinflusst. Sobald die Innenelektrode durch äußere Kräfte beeinflusst wird, kann sie leicht brechen, was zum Ausfall des Keramikchipkondensators führt. Wie in den Abbildungen unten dargestellt, ist das Kondensatorende des Keramikpflasters aufgrund äußerer Krafteinwirkung gebrochen oder beschädigt. Beispielsweise wird bei der mechanischen Montage die Leiterplattenbaugruppe in das Gehäuse eingebaut und der elektrische Treiber für die Montage verwendet. Zu diesem Zeitpunkt führt die mechanische Beanspruchung des elektrischen Treibers dazu, dass der Kondensator leicht abgeschaltet wird.     (2) Aufgrund des Qualitätsproblems der schlechten Verbindungskraft des Keramikchip-Kondensatorendes (Körper und Elektrode) kann die Metallelektrode durch den Prozess des Schweißens, des Warmstanzens, des Debuggens und anderer äußerer Kräfte leicht abfallen Körper und Elektrode sind getrennt, wie in der folgenden Abbildung dargestellt.  2. Fehler durch unsachgemäßen Schweißvorgang (1) Es kommt sehr häufig vor, dass der Thermoschock von Keramikchipkondensatoren durch unsachgemäßes manuelles Schweißen oder Nacharbeiten des elektrischen Bügeleisens verursacht wird. Beim Schweißen kommt es zu einem Thermoschock. Wenn der Bediener die Spitze des Lötkolbens direkt mit der Elektrode des Kondensators berührt, führt der Thermoschock zu Mikrorissen im Körper des Keramikchip-Kondensators und der Keramikchip-Kondensator fällt nach einiger Zeit aus. Grundsätzlich sollte das SMT von Hand geschweißt werden. Mehrfaches Schweißen, einschließlich Nacharbeiten, wirkt sich auch auf die Lötbarkeit des Chips und die Beständigkeit gegen Schweißhitze aus. Der Effekt ist kumulativ, sodass es nicht geeignet ist, den Kondensator viele Male hohen Temperaturen auszusetzen (2) Das Zinn an beiden Enden des Kondensators ist beim Schweißen asymmetrisch. Beim Schweißen ist das Zinn an beiden Enden des Kondensators asymmetrisch, wie in der folgenden Abbildung dargestellt. Das Zinn an beiden Enden des Kondensators ist asymmetrisch. Wenn der Kondensator einer äußeren Krafteinwirkung oder einem Belastungstest ausgesetzt wird, wird das Keramikpflaster durch übermäßiges Löten stark beeinträchtigt. Die Fähigkeit des Kondensators, mechanischer Beanspruchung standzuhalten, führt zu Rissen im Gehäuse und an der Elektrode sowie zum Ausfall.   (3) Zu viel LotZu den Faktoren, die den Grad der mechanischen Beanspruchung eines mehrschichtigen Keramikchipkondensators auf einer Leiterplatte beeinflussen, gehören das Material und die Dicke der Leiterplatte, die Menge des Lots und die Position des Lots. Insbesondere beeinträchtigt zu viel Lot die Fähigkeit des Chip-Kondensators, mechanischer Beanspruchung standzuhalten, und führt zum Ausfall des Kondensators. 3. Kondensatorausfall aufgrund unangemessener Pad-Konstruktion(1) Das Design des Pads ist unangemessen, wie in der folgenden Abbildung dargestellt, wenn das Pad ein Loch aufweist. Das Lot geht verloren (es gibt ein solches Designphänomen im Produkt), was aufgrund der Asymmetrie des Lots an beiden Enden des Kondensators zu Schweißfehlern führt. Zu diesem Zeitpunkt wird ein Stressscreening oder ein externer Krafttest durchgeführt. Die an beiden Enden des Keramikchipkondensators freigesetzte Spannung führt leicht zu Rissen und Ausfällen.  (2) Ein anderes Pad-Design ist in der folgenden Abbildung dargestellt. Beim Online-Schweißen ist die Größe der Pads an beiden Enden des Kondensators unterschiedlich oder asymmetrisch (dieses Designphänomen gibt es im Produkt), und die Menge der gedruckten Lotpaste ist ganz unterschiedlich. Das kleine Pad reagiert schnell auf die Temperatur und die darauf befindliche Lotpaste schmilzt zuerst. Unter der Wirkung der Lötpastenspannung richtet sich das Bauteil auf, was zu einem „aufrechten“ Phänomen oder einer Lötasymmetrie führt, die zum Ausfall des Kondensators führt. Ein Ende mehrerer Keramikchipkondensatoren teilt sich ein großes Pad. Wenn ein Kondensator am gemeinsamen Ende repariert werden muss oder einer der Kondensatoren ausfällt und ersetzt werden muss, erleidet auch ein Ende der anderen Komponenten einen Thermoschock und der Kondensator ist anfällig für Ausfälle.   4. Fehler durch Schlagtest bei hoher und niedriger TemperaturWährend des Tests ist der Wärmeausdehnungskoeffizient (CTE) von PCB, MLCC-Endelektrode und Keramikdielektrikum gering und der Chipkondensator ist aufgrund des schnellen Wechsels von Kälte und Hitze einer gewissen thermischen Belastung ausgesetzt. Der Körper (Keramik) und die Elektrode (Metall) von SMC erzeugen Spannungsrisse, die zum Versagen von SMC führen. 5. Ausfall durch mechanische BeanspruchungEin unsachgemäßer Betrieb der Druckplatte während des Montageprozesses führt zu mechanischer Belastung, die zum Bruch des Kondensators führt, und das Pad ist in der Nähe des Schraubenlochs konstruiert, was bei der Montage leicht zu mechanischen Schäden führen kann. Eine solche Beschädigung führt dazu, dass sich der Riss im Temperaturschocktest weiter ausdehnt, was zum Ausfall des Kondensators führt. Aus der Struktur ist ersichtlich, dass MLCC großen Druckspannungen standhalten kann, seine Biegefestigkeit jedoch gering ist. Jeder Vorgang, der bei der Kondensatormontage zu einer Biegeverformung führen kann, führt zu Rissen in den Bauteilen.
    WEITERLESEN
  • So reduzieren Sie die Ausfallrate von Kondensatoren
    Aug 21, 2023
     1. Vermeiden Sie äußere Gewalt(1) Während des Montageprozesses muss vermieden werden, dass die Leiterplatte einer zu starken oder zu schnellen Biegung ausgesetzt wird.(2) Keramikchip-Kondensatoren sind so konzipiert, dass beim Biegen der Leiterplatte hohe mechanische Belastungen vermieden werden, wie in der folgenden Abbildung dargestellt.(3) Die beiden Lötstellen des Keramikchipkondensators sollten so konstruiert und mechanisch verbunden sein. Die Spannungsrichtung ist ausgeglichen und nicht im rechten Winkel, wie in der folgenden Abbildung dargestellt.(4) Wenn die Leiterplatte an der Steckerverbindung zwischen Kabel und PCBA beim Herausziehen oder Einstecken des Steckers nicht gestützt wird, verzieht sich die Leiterplatte und beschädigt die benachbarten Komponenten. Wenn die Leiterplattenfläche groß ist (d. h. mehr als 15 cm × 15 cm), muss besonders darauf geachtet werden, Schäden an den Bauteilen zu vermeiden. 2. MaterialauswahlUm die thermische Anpassung zwischen dem Chip-Kondensator und dem Substratmaterial zu verbessern, ist es notwendig, das geeignete Substratmaterial und den Kondensator mit höherem Niveau und besserer Beständigkeit gegenüber thermischer Belastung und mechanischer Belastung auszuwählen, um den Anforderungen der Produktverwendung gerecht zu werden. 3. SchweißanforderungenBeim Schweißen sollte der Bediener die Prozessdisziplin strikt umsetzen und das Schweißen gemäß den Prozessdokumenten und typischen Prozessanforderungen durchführen. 4. DesignanforderungenDer Pad-Abstand sollte angemessen sein. Das Design in der folgenden Abbildung (a) kann aufgrund von Spannungen nach dem Schweißen des Chipkondensators leicht beschädigt werden. Das Design in der folgenden Abbildung (b) trägt dazu bei, die Widerstandsfähigkeit gegenüber mechanischer Beanspruchung zu verbessern. (2) Bei der Gestaltung von Leiterplatten sollten Designer die Pads nach Unternehmensstandard entwerfen, um unangemessenes Design zu vermeiden. 5. ReparaturanforderungenWenn es notwendig ist, den Kondensator zu reparieren, sollte der Kondensator nach dem Schweißen unter Berücksichtigung der Auswirkungen des Schweißwärmestaus entsorgt und ein neuer Kondensator verwendet werden. 6. FazitDie richtige Betriebsmethode, eine angemessene Materialauswahl und das richtige Pad-Design können eine sehr gute Rolle dabei spielen, den Ausfall von Kondensatoren zu reduzieren, die Produktqualität und -zuverlässigkeit zu verbessern und unnötige Nacharbeiten zu vermeiden. 
    WEITERLESEN
  • Vorsichtsmaßnahmen für die Verwendung von CA55-Polymer-Tantal-Festelektrolyt-Chipkondensatoren
    Aug 03, 2023
      i. Vorsichtsmaßnahmen bei der LagerungFeuchtigkeitsempfindlichkeitsstufe (MSL):MSL3Lagerbedingungen: Temperatur: -5~40°C, Feuchtigkeit: ≤60 % relative LuftfeuchtigkeitFrei von korrosiven Gasen. Nach dem Entfernen der Vakuumverpackung sollte der Kondensator nicht länger als 24 Stunden der Luft ausgesetzt werden. Nicht verwendete Kondensatoren sollten erneut vakuumiert oder in einem trockenen Schrank aufbewahrt werden.  ii. Vorsichtsmaßnahmen vor dem LötenTantalkondensatoren kann durch Wellenlöten, Reflow-Löten und Handlöten befestigt werden. In den Fällen A, B, C, D, D1 und E wird die Verwendung von Reflow-Löten empfohlen (falls Handlöten erforderlich ist, siehe 2. Vorsichtsmaßnahmen für Handlötarbeiten) und Gehäuse F und höher sind nur zum Handlöten geeignet (Tantalkondensatoren mit großem Gehäuse werden durch Reflow-Löten gelötet, aufgrund der Ausdehnung des Kerns kann es sehr leicht zu Rissen im Gehäuse kommen.).1. BackbehandlungBei CA55-Kondensatoren, die länger als 24 Stunden ausgepackt und der Luft ausgesetzt waren, muss der Benutzer vor der Verwendung das Klebeband entfernen und ein zweites Backen bei Luftfeuchtigkeit durchführen ≤ 60 % relative Luftfeuchtigkeit, um sicherzustellen, dass vor dem Löten keine übermäßige Feuchtigkeit im Inneren des Kondensators absorbiert wird. Die empfohlene Backtemperatur und -zeit sind:A. Für CA55-Kondensatoren, die länger als 24 Stunden ausgepackt und der Luft ausgesetzt waren, wird empfohlen, sie vor dem Löten 12 Stunden lang bei 125 °C zu backen.B. Bei CA55-Kondensatoren, die länger als eine Woche ausgepackt und der Luft ausgesetzt waren, müssen Gehäuse A, B, C, D1, D und E 24 Stunden lang bei 125 °C gebacken werden; Fall F und höher sind nur zum Handlöten geeignet und müssen vor dem Löten nicht gebrannt werden.2. HandlötenKondensatoren, die von Hand gelötet werden, müssen vor dem Löten nicht gebrannt werden, die Temperatur der Lötkolbenspitze sollte jedoch streng kontrolliert werden. Es wird empfohlen, eine Löttemperatur von 280–350 °C zu verwenden ℃ (30-W-Leistungslötkolben, antistatischer elektrischer Keramiklötkolben wird empfohlen). Gleichzeitig ist zu beachten:A. Es ist verboten, das Elementsubstrat direkt mit einer Lötkolbenspitze zu erhitzen. Denn ein übermäßiger Temperaturschock kann die innere Mikrostruktur des Bauteils beschädigen und zu Leistungseinbußen führen.B. Das Lötpad muss mit Lötpaste vorgedruckt werden und die Dicke der Lötpaste sollte zwischen 0,15 mm und 0,20 mm kontrolliert werden.C. Es ist notwendig, eine Leiterplattenheizung zu verwenden, um die verklebten Komponenten auf mindestens 125 °C vorzuwärmen ℃~150 ℃/5 Minuten, wobei darauf zu achten ist, dass die Temperatur des Bauteilsubstrats möglichst nahe am Schmelzpunkt der Lotpaste liegt.D. Die Position der Lötkolbenspitze zur Löterwärmung ist das Lötpad, nicht das Bauteilsubstrat.3. Reflow-LötenDie Reflow-Lötkurve ist für die Fälle A, B, C, D, D1, E geeignet:Bleifreie Kondensatoren: Die maximale Löttemperatur beträgt 250 ± 5 °CBleikondensatoren: Die maximale Löttemperatur beträgt 235 °C±5℃    
    WEITERLESEN
1 2
Insgesamt 2Seiten

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
einreichen

heim

Produkte

Kontakt